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zero-dispersion point
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Russian Federation
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Abstract. The non-linear spin dynamics in ferromagnets described by the non-linear Schrödinger
equation with dispersion of the third order is investigated. The scenarios of evolution of various
initial distributions of magnetization and the process of small-amplitude modulation of stable
spatially non-localized waves are studied analytically and by computer simulation. The possibility
of the formation of ‘dark’ and ‘bright’ quasi-soliton patterns and their stability are discussed.

1. Introduction

It is known that the basic peculiarities of thelinear dynamics of spin excitations in magnets,
namely the spectrum, amplitudes of oscillations, and conditions for excitations, are governed by
the interactions that determine the ground state of the system. The long-range magnetic dipole–
dipole interaction leads to only a minor perturbation in the ground state, but, nevertheless,
its role in the spin dynamics is exceedingly great. It causes spatial dispersion of the long-
wavelength range of the excitation spectrum and results in the peculiarities of thenon-linear
behaviour related to the shape of thelinear dispersion law curve.

Analysis of the linear spin-wave spectrum of a normally magnetized isotropic ferro-
magnetic slab with free spins on the surface leads to a remarkable conclusion. There exists an
interval of the wavenumbers for activation of the low-energy branch of the exchange-dipole
spectrum wherein the second derivative of the dispersion law∂2

k ω(k) (ω(k) stands for the
dispersion law;k is the wavenumber) is much less than the third derivative and may even go to
zero (at the zero-dispersion point) [1]. The existence of such an interval is not caused by the
hybridization of the adjacent branches of the spin-wave spectrum, but is determined completely
by the competition of dispersions of two types—an exchange one and a magnetostatic one.
The region of zero dispersion may occur not only in the case of exchange-dipole waves, but
also for other types of magnetic excitation (e.g. surface magnetostatic waves (see [2])). Note
that the first observations of ‘dark’ solitons of magnetostatic surface waves in thin magnetic
films were presented in [3]. The treatment of the weakly non-linear dynamics in terms of the
traditional model—using the non-linear Schrödinger equation (NSE)—fails, because the role
of the highest derivatives with respect to the spatial coordinate (in particular that of the third
order) now becomes important in the evolution equation for the envelope of spin waves. At
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the present time are a number of papers available that are devoted to the analysis of the NSE
with high-order dispersion (the generalized NSE). The possible types of such equations in
non-linear optics and their integrability have been discussed in [4, 5]. A detailed analysis of
optical soliton and quasi-soliton transport, and the equilibrium conditions with respect to the
Cherenkov radiation, has been carried out in [5]. Against the background of the generalized
NSE, the process of automodulational amplification of the noise of spin oscillations in the
travelling magnetostatic wave was studied in [6].

The present paper is devoted to the analysis of the features of the non-linear spin-wave
processes in ferromagnetic films in the vicinity of the zero-dispersion point. In section 2
the basic equations for the weakly non-linear dynamics of exchange-dipole waves and the
conservation laws related to them are considered. The low-amplitude long-wavelength mod-
ulations of spatially non-localized non-linear waves are discussed in section 3, where the ‘dark
solitons’ are predicted also. In section 4 the peculiarities of the evolution of the spatially
localized initial distributions of the magnetization are analysed. The long-living soliton-like
patterns, travelling with nearly constant velocity, may arise from these distributions after the
‘splitting off’ of the non-linear wave sequence has occurred. Such ‘bright’ quasi-solitons
leave behind a static low-amplitude tail when travelling and radiate forward the low-amplitude
waves. The shape of the ‘bright’ soliton and the long-wavelength modulations of its tail are
described analytically. In section 5 the variation of the structure of the bright soliton in the
process of motion is analysed. ‘Cherenkov-type’ radiation is considered as a mechanism of
change of the soliton structure. The non-linear wave sequence ‘split off’ after quasi-soliton
formation is discussed in section 6.

2. The equation for the weakly non-linear dynamics of exchange-dipole waves in the
zero-dispersion range; conservation laws

Consider an isotropic ferromagnetic slab magnetized along its normal direction (z-axis) with
free spins on its surfaces. We shall use the version of the reductive perturbation theory
proposed in [1] to deduce effective equations for the weakly non-linear dynamics of the
activation exchange-dipole low-energy branch of the wave spectrum. Unlike in [1], we are
interested in the zero-dispersion range, where∂2

k ω(k) ≈ 0. We have found that the dispersion
effects and the non-linear effects reach a balance for the following choice of slow variables:
X = ε2(x + cgt), τ = ε6t , wheret andx are time and space coordinates, respectively,ε is
a small parameter specifying the deviation from equilibrium, andcg is the group velocity of
the spin waves. The following evolution equation is derived according to this choice of slow
variables after calculations similar to those carried out in [1]:

i ∂τϕ +
i

6
∂3
k ω(k) ∂

3
Xϕ + g|ϕ|2ϕ = 0. (1)

Note that this choice of the variables leads to|ϕ| ≈ O(ε3). All of the quantities in (1) are
dimensionless:

τ → ωHτ X→ X/d

k→ kd ω(k)→ ω(k)/ωH

g→ g/ωH .

Hered is the thickness of a slab (film),ωH = γH0, γ is the gyromagnetic ratio, andH0 is
the external field. The parameterg, characterizing the interaction of the waves, in the general
case depends on the wavenumber and the slab parameters, and coincides with that mentioned
in [1]. The relation between the magnetization in the slab plane and the fieldϕ is [1]

M−1
0 (mx + imy) = (1 +ω(k)/ω0(k))ϕ(X, τ) (2)
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where

ω2(k) = ω0(k)[ω0(k) + ωMσ(k)]

σ(k) = 1− [1− exp(−|kd|)]/|kd|
ω0(k) = ωH + γM0αk

2

ωM = 4πγM0.

M0 is the saturation magnetization andα is the exchange constant. Note that in our case the
coefficient 1 +ω/ω0 changes negligibly and is close to 2 over a rather wide range ofk-values
(see [1]).

We present now conservation laws that are connected with equation (1). It can easily be
verified that the evolution of any spatially localized distribution of the fieldϕ occurs in such a
way that ∫ ∞

−∞
|ϕ|2 dX = N = constant. (3)

Equation (1) can be deduced with the help of the Lagrange-function density

L = 2

γM0

[
i(ϕ ∂τϕ

∗ − ϕ∗ ∂τϕ) +
i

6
∂3
k ω (ϕ ∂

3
Xϕ
∗ − ϕ∗ ∂3

Xϕ)− g|ϕ|4
]
.

The expression for the energy of the systemE (see [1]) in terms of the fieldϕ is as follows:

E =
∫ ∞
−∞

dX

[
∂L

∂(∂τϕ)
(∂τϕ) +

∂L

∂(∂τϕ∗)
(∂τϕ

∗)− L
]

= 2

γM0

∫ ∞
−∞

dX

[
i

6
∂3
k ω (ϕ

∗ ∂3
Xϕ − ϕ ∂3

Xϕ
∗) + g|ϕ|4

]
= constant. (4)

The field momentum of the system is defined by the expression

P =
∫ ∞
−∞

dX

[
∂L

∂(∂τϕ)
(∂Xϕ) +

∂L

∂(∂τϕ∗)
(∂Xϕ

∗)
]

= i
2

γM0

∫ ∞
−∞

dX (ϕ ∂Xϕ
∗ − ϕ∗ ∂Xϕ) = constant. (5)

Conservation laws (3)–(5) are very useful in the analysis of the evolution of initial-field (ϕ-)
distributions (see sections 4 and 5).

3. Long-wavelength modulations of monochromatic non-linear waves

In order to specify the role of the third-order dispersion terms in equation (1), let us consider
the stability conditions for the plane wave which is an exact solution of (1):

ϕ0 = (w0)
1/2 exp[i(�0τ + k0X)]. (6)

Here,w0 is the amplitude, andk0 is the wavenumber corresponding to the deviation of the wave
vector from the value at the point at which the second derivative of the spin-wave dispersion
law goes to zero. The dispersion law for the wave (6) has the form

�0 = 1

6
∂3
k ω k

3
0 + gw0 (7)

where the value of∂3
k ω is calculated at a point where∂2

k ω(k) = 0. Let us present the solution
of equation (1) in a form that allows us to establish the stability conditions:ϕ = ϕ0(1 + ϕ̃),
where|ϕ̃| � 1 and

ϕ̃ = ϕ̃1 exp[i(pX + λτ)] + ϕ̃2 exp[−i(pX + λ∗τ)].
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By means of linear analysis of the stability, we reach the conclusion that the plane wave
(6) is unstable relative to long-wavelength perturbations in view of the inequalitygk0 ∂

3
k ω < 0.

In particular, forg, ∂3
k ω > 0 (for the sake of definiteness, these conditions are assumed to be

realized in the rest of the calculations), waves withk0 < 0 are modulationally unstable. If in
this case�0 > 0, that isgw0 >

1
6 ∂

3
k ω k

3
0, then modulationally unstable waves propagate to

the right.
Note that the static wave with�0 = 0,k0 = −(6gw0/∂

3
k ω)

1/3 < 0, belongs to the domain
k0 < 0. From the viewpoint of linear analysis, it is unstable (the increment of the amplitude
is proportional to|p|√{|gk0 ∂

3
k ω|w0}). However, computer simulation leads to an interesting

conclusion. The low-amplitude static wave which has been forming over a long period of
time at the rear of the ‘bright quasi-soliton’ (see below) undergoes only weak modulations
over a long distance. Apparently, the ‘modulated structure’ (6) with�0 = 0 is realized in
the above-mentioned spatial interval, since its energy per period (4) is less than that for the
ϕ = 0 state, and therefore non-linear interactions may stabilize the static wave under the given
definite conditions.

At the same time, it follows from the analysis of the linearized problem that, against the
background of stable (fork0 > 0) waves, propagating to the left, Goldstone modes may exist,
with dispersion lawsλi(p), i = 1, 2:

λi(p) =
[

1

2
∂3
k ω k

2
0 + εim

]
p +

[
1

6
∂3
k ω + εin

]
p3 (8)

whereε1 = 1, ε2 = −1,m2 = gk0w0 ∂
3
k ω, andn = (∂3

k ω k0)
2/8m. In deriving (8), we have

assumed that(k0d)(pd)
2� 4(gw0/∂

3
k ω).

We shall describe now the long-wavelength low-amplitude modulations of the wave (6).
The corresponding solutions of equation (1) are presented in the form

ϕ = √w exp[i(�0τ + k0X + χ)] (9)

wherew = w0(1 + ν(X, τ)), |ν| � 1, k0 � ∂Xχ , and|�0| � ∂τχ . We shall write down the
set of equations for the fieldsν andχ to within the squared terms inν andχ . The derivatives
with respect to spatial coordinates of order higher than the fourth may be neglected in the long-
wavelength limit in terms linear inν andχ in these equations. Only low-order derivatives will
be retained in the non-linear terms. As a result we obtain the following set of equations:

Lν − ∂3
k ω k0 ∂

2
Xχ −

1

2
∂3
k ω ∂X[(∂Xχ)

2 + 2k0ν ∂Xχ ] = 0

w0Mν + Lχ − 1

2
∂3
k ω k0(∂Xχ)

2 = 0
(10)

where

L = L0 +
1

6
∂3
k ω ∂

3
X

L0 = ∂τ − 1

2
∂3
k ω k

2
0 ∂X

M = −g +
1

4
w−1

0 ∂3
k ω k0 ∂

2
X.

The fieldν may be easily eliminated from (10). The long-wavelength-limit relation between
ν andχ in the principal approximation is used to transform the non-linear terms:

w0gν = L0χ. (11)
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After simple calculations, closed equations forχ(X, τ) were obtained:{
−L2

0 −
1

3
∂3
k ω L0 ∂

3
X + ∂3

k ω k0gw0 ∂
2
X −

(
∂3
k ω

2
k0

)2

∂4
X

}
χ

+
∂3
k ω

2
∂X
[
gw0(∂Xχ)

2 + 2k0 ∂Xχ L0χ
]

+
∂3
k ω

2
k0L0(∂Xχ)

2 = 0. (12)

In deducing (12), we neglect terms that are cubic in the fieldsν andχ in the dynamic equations.
Analysis shows that this is appropriate for waves with stationary profiles, travelling with the
velocityu, if

|gw0 + 3k0l| � |lA|. (13)

Here l = u − 1
2 ∂

3
k ω k

2
0, andA is a typical amplitude of the field∂Xχ . If the soliton exists,

A ∼ |γ0/δ| (see below).
Let us consider solutions of equation (12) of the type representing waves with stationary

profiles:

χ = χ(ξ) ∂ξχ = f (ξ) ξ = X + uτ. (14)

Thenf (ξ) is defined by the equation

(∂ξf )
2 = δf 3 + γ0f

2 + βf + α (15)

whereδ = 1
3 ∂

3
k ω r(gw0 + 3k0l), γ0 = r(m2 − l2), r−1 = 1

3 ∂
3
k ω l + 2mn, andα andβ are

arbitrary constants. Let us analyse possible solutions of equation (15).
Forα = β = 0 and with the inequality

γ0 > 0 (16)

fulfilled, equation (15) allows the formation of solitary waves. The corresponding solution has
the form

f = −γ0

δ
sech2

(
1

2
γ

1/2
0 ξ

)
. (17)

The results of computer simulations of the solution of equation (1) with impulse excitation
of the inhomogeneous state against the background of harmonic wave (6) are presented in
figure 1. The long-living localized structure arises in the process of evolution, and its profile
is approximated rather well by the solution (17) (see the dotted curve in figure 1).

In the case under consideration, inequality (13) takes the form

|∂3
k ω (gw0 + 3k0l)

2| � 3|l(m2 − l2)|. (18)

In addition to (18), the condition for the long-wavelength approximation must be fulfilled (the
typical size of the solitonκ−1 ∼ 1/

√
γ0 must be greater than the wavelengthk−1

0 ):∣∣∣∣ κk0

∣∣∣∣ ∼ ∣∣∣∣√γ0

k0

∣∣∣∣� 1. (19)

When the wave (6) is stable relative to linear perturbations,w0 ∂
3
k ω k0g ≡ m2 > 0 (∂3

k ω > 0,
k0 > 0, g > 0 for definiteness), inequalities (18), (19) will be necessarily fulfilled for the
localized perturbations, which spread to the left against the background of the wave (6), if

0< m− l � min

{
∂3
k ω

6m2
(gw0 + 3k0m)

2, k2
0

(
n +

1

6
∂3
k ω

)}
. (20)
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Figure 1. A ‘dark quasi-soliton’ against the background of a non-linear harmonic wave. The dotted
curve corresponds to the exact solution of (17) for(k0d) ≈ 10−1, ∂3

k ≈ 4× 10−2, g ≈ 0.9, and
d ≈ 1µm; the length of the plate in the direction of wave propagation is∼0.5 cm.

In this case the inverse width of the soliton,κ, and its amplitude,A, are defined by the
expressions

κ2 = γ0 ≈
(
m +

1

2
∂3
k ω k

2
0 − u

)(
n +

1

6
∂3
k ω

)
> 0

A = γ0

δ
≈ κ2m(∂3

k ω + 6n)
[
∂3
k ω (gw0 + 3k0m)

]−1
.

Using material parameters presented in [1], namely, at the point of zero dispersion,∂3
k ω ≈

4× 10−2, and choosingk0d ≈ 10−2, ωH ≈ 1010 s−1, andd ≈ 1 µm, we can show that the
above-mentioned inequalities are fulfilled for these values. Besides this, the conditions ofϕ

being small andk0� ∂Xχ are also fulfilled.
Returning to the Goldstone modes (8), note that in this case, against the background of

the wave (6), the modes withε1 = 1 interact most intensively, as can easily be shown. In
the case where the modulation of the wave (6) is due only to the excitation and interaction
of these modes, it is convenient to pass over to the frame of reference moving with phase
velocity ν01 = 1

2 ∂
3
k ω k

2
0 +m for these modes, and to use the new variablesξ = X + ν01τ and

T ≡ τ instead ofX andτ . As long as the dependence of the fieldχ(ξ, T ) on the variableT
is weak in the case under consideration, we may neglect terms of the order of∂2

T χ and∂T ∂3
ξ χ

in equations (12), and also the non-linear terms containing the derivatives∂T χ . As a result,
equation (12) is reduced to the Korteweg–de Vries (KdV) equation

∂T f +

(
1

6
∂3
k ω + n

)
∂3
ξ f −

∂3
k ω

4

(
3k0 +

gw0

m

)
∂ξf

2 = 0 (21)

wheref = ∂ξχ . It can easily be verified that solution (19) generalizes the one-soliton solution
of the model (21). The speed of the soliton in the model (21) is lower than the speed of
Goldstone’s waves belonging to branch (8) withε1 = 1. The closer the soliton speed to
the phase velocity of the Goldstone mode, the better the likelihood of inequality (20) being
fulfilled, and the greater the soliton amplitude and the lower its velocity.

Note that according to (11) the modulation of the wave (6) is synchronized with the
modulation of the wave vector.
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4. Peculiarities of the evolution of the spatially localized initial distributions of the
magnetization field

As computer simulations show, the transformation of the spatially localized initial perturbation
of the fieldψ = aϕ(bX), witha = g1/2 andb = ( 1

6 ∂
3
k ω)

1/3, which can be chosen, for instance,

in the form‡ψ(X, τ = 0) = √2 sech(X − X0), occurs through the following scenario. At
first, the|ψ |2-distribution is strongly deformed and radiates a non-linear sequence of waves
to the left (see figure 2). After part of the energy has been ‘thrown off’, there remains a long-
living localized pattern, which moves with nearly constant velocity from the right to the left.
The change in shape of such ‘quasi-soliton’ happens in two ways: firstly, at the expense of
low-amplitude waves, by forward radiation (to the left); and secondly, by leaving behind the
low-amplitude tail, which presents a nearly static harmonic wave with|ψ |2 ≈ constant at a
sufficiently long distance to the rear of the ‘quasi-soliton’ (see figure 3). It must be emphasized
that the width of the wave packet of the initial distribution of the fieldψ should be taken in
such a way that the wavenumbers of the wave-packet harmonics do not violate the inequality
∂2
k ω � ∂3

k ω.

Figure 2. ‘Splitting off’ the non-linear wave sequence from the initial distribution of the
magnetization.

The processes mentioned above can be understood qualitatively on the basis of the conserv-
ation laws (3)–(5). For further analysis, it is convenient to write down the fieldϕ in the form

ϕ = R exp iθ. (22)

Since, according to (3),∫ ∞
−∞

R2 dX = N = constant

one can introduce the notion of the centre of gravity for the distribution|ϕ|2 = R2:

〈X〉 = 1

N

∫ ∞
−∞

XR2 dX. (23)

‡ Equation (1) in terms ofψ has the form iψτ + iψXXX + |ψ |2ψ = 0.
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Figure 3. The ‘bright quasi-soliton’ moving to the left (in the inset). The quasi-static ‘tail’ (left)
and small-amplitude forward radiation (right) are observed at the foot of a peak after zooming in.

Using (1), it can easily be shown that the speed of the centre of gravity has the form [7]

ν = d

dτ
〈X〉 = −∂

3
k ω

N

∫ ∞
−∞

dX [(∂XR)
2 + (∂2

Xθ)
2R2]. (24)

The direction of motion depends on the sign of∂3
k ω (in our case the sign is positive, so it

moves to the left). The speed of the centre of gravity is determined by the gradients of the
phase and the amplitude of the fieldϕ, as follows from (24). The conservation law for the field
momentum (5) also gives useful information.

Let the initial distribution have no phase gradient, and let theϕ-function be, for instance,
real valued; thenP = 0. After separation of the wave sequence from this distribution,
the functionR2 represents a two-peak curve along thex-axis. From the condition of field
momentum conservationP = 0 (see (5)), it follows that ‘mean’ wavenumber corresponding
to the wave sequence has to differ in sign from the ‘mean’ wavenumber corresponding to the
soliton. Since only waves travelling to the left with positive wavenumbers are modulationally
stable, the ‘mean’ wavenumber localized on the ‘soliton’ must be negative. It should be noted
that in this case the ‘soliton’ and small-amplitude radiation move in one direction and this does
not contradict the momentum conservation law.

As was pointed out earlier, the energy estimate allows one to explain qualitatively the
tendency towards formation of a static quasi-monochromatic tail of the ‘soliton’. Such a tail
corresponds to the following solution of equation (1):

ϕ = √w0 exp
[−iX(6gw0/∂

3
k ω)

1/3 + iα
]

(25)

wherew0 andα are real constants. The long-wavelength static modulations of the spatial
structure (25) are described by equation (15) withu = �0 = 0, k0 = −(6gw0/∂

3
k ω)

1/3 < 0.
In this case, condition (16) fails, and, hence, there are no solitary waves against the background
of the non-uniform state (25). However, forα > 0 (see (15)), small-amplitude modulations of
the wave (25) may exist, if the following inequality is satisfied:

D = γ 2 − 4βδ > 0. (26)

Here δ = − 20
3 k0 and γ = −5k2

0. To make the corresponding solution of equation (15)
continuous under change of the parameterβ, we should takeδβ < 0. Under this condition,
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we find

f = a − (a − c)dn2(η, k) η = 1

2
X
√
(a − c)δ k =

√∣∣∣∣ c

c − a
∣∣∣∣ (27)

wherea = (√D − γ )/δ > 0 andc = (−γ −√D)/δ < 0. The cnoidal wave (27) describes
the long-wavelength modulations of the tail of the ‘bright soliton’. The amplitude of the
modulation rises for movement far from the soliton. It is possible that this situation can be
described, if slow dependence of the spatial coordinate of the parameters of the cnoidal wave
is assumed, and if the Whithams [8] method of averaging is used.

It follows from the results of the computer simulation that in the region of ‘soliton’
localization the wave vectork0 (k0 < 0) is nearly constant, and also the size of the ‘soliton’1

is greater than the wavelength of the modulation of its profile(1 > |k0|−1). This information
can be used in the construction of the approximate solution of equation (1), which will describe
the internal structure of the ‘quasi-soliton’. The following procedure for the construction of the
asymptotic expansion in powers of the parameter|k0|−11−1 � 1 corresponds to the version
of the non-linear perturbation theory:

ϕ = R(ζ ) exp

{
i

[
k0X +

∂3
k ω

6
k3

0τ +
∞∑
n=1

εn�(n)τ + χ(ζ )

]}
(28)

whereε is a small parameter, characterizing slow evolution of the wave shape, and

ζ = ε(X + ντ)

ν = ν(0) +
∞∑
n=1

εnν(n)

R(ζ ) =
∞∑
n=1

εnR(n)(ζ )

χ =
∞∑
n=1

εnχ(n)(ζ ).

The equations arising in every order ofε are consequently solved. Here the functionsχ(i)(ξ)

are expressed in terms ofR(i)(ξ), and a closed equation forR(1)(ξ) is obtained:

�(2)R(1) +
1

2
∂3
k ω k0 ∂

3
ζ R

(1) − g(R(1))3 = 0. (29)

Among its bounded solutions, both localized and periodic non-linear waves exist. The integ-
ration constants, and parameters�(n) andν(n), for both types of solution of the equation for
R(1), may be chosen in such a way that no secular terms, caused by the phase shift of the wave
and by its translation, proportional toR(1) or ∂ζR(1) will appear. For the self-localized wave,
after simple calculations we found

ν(0) = 1

2
∂3
k ω k

2
0 ν(2) = −1

6
∂3
k ω κ

2

�(2) = 1

2
|∂3
k ω k0|κ2 R(2) = ν(1) = �(1) = �(3) = �(4) = 0

R(1)(ζ ) = κ
√∣∣∣∣∂3

k ω k0

g

∣∣∣∣ sech(κζ ) χ(1)(ζ ) = − κ

2k0
tanh(κζ )

�(2)

g
> 0 g ∂3

k ω k0 < 0.

(30)
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Hereκ is the parameter determining the size of the quasi-soliton (1 ∼ κ−1, κ � |k0|).
The tendency towards formation of a soliton of the type (30) is explained by the fact that

for k0 > 0 we move away from the point of zero dispersion, where∂2
k ω = 0, into a region

where the ordinary NSE with quadratic dispersion allows the existence of exponential ‘bright’
solitons. That is why the result obtained, equations (30), is close to that presented in [9],
where the term with anomalous dispersion was treated as a small perturbation to the ordinary
NSE with quadratic dispersion. In the papers [9–11], it was established that the theoretical
description of a small-amplitude radiation from a newly formed ‘soliton’ of the type (30)
requires another version of the perturbation theory, similar to the VKB method.

5. Small-amplitude radiation from ‘bright solitons’

Small-amplitude radiation from a ‘bright quasi-soliton’ (30) cannot be described by an exp-
ansion of the type given by (28) in powers of the parameterε = O|κ/k0|, because it corresponds
to terms with exponentially small amplitudes, that are non-analytic inε. According to (28)
and (30), the shape of the ‘bright soliton’ in the main approximation is

ϕsol ≈ ϕmaxsech(κζ ) exp iθ θ = k0X +
1

6
∂3
k ω k

2
0τ +�(2)τ

ζ = X + ντ ν = 1

2
∂3
k ω

(
k2

0 −
1

3
κ2

)
ϕmax= κ

√∣∣∣∣∂3
k ω k0

g

∣∣∣∣. (31)

Such a soliton cannot be stationary, because it interacts resonantly with the radiation wave,
whose velocity coincides with the soliton velocityν. Let us represent the radiation field in the
form

ϕrad≈ ϕmaxf (ζ, τ )exp iθ. (32)

At large distances from the soliton (ζ →−∞), the functionf (ζ, τ ) satisfies the linear equation

i ∂τf + iν(2) ∂ζ f −�(2)f +
i

6
∂3
k ω ∂

3
ζ f −

1

2
∂3
k ω k0 ∂

2
ζ f = 0. (33)

The quantities�(2) andν(2) are defined by (30). It can easily be shown by solving this equation
that the following linear wave is coupled resonantly to the soliton (31):

f (ζ, τ ) = C exp(ir0ζ )H(−νgζ )H(|νgτ | − |ζ |) (34)

wherer0 = −3k0 > 0 is the wave vector corresponding to the condition for the ‘Cherenkov’
resonance(�(r0) = 0; see below). The Heaviside step functionsH(z) = 1

2(sgnz + 1) in (34)
determine the direction of propagation and the position of the radiation front, depending on
the group velocityνg of the wave (32) in the frame of reference related to the soliton (31):

νg = ∂�

∂r

∣∣∣∣
r=r0
= ∂3

k ω

6
(κ2 + r2

0) �(r) = 1

6
∂3
k ω (r − r0)(r2 + κ2). (35)

Here�(r) is the dispersion law for the linear waves (33) in the frame of reference related
to the soliton. The non-analytic dependence of the amplitude of radiationC on the parameter
ε in the main approximation inε may be found by a method similar to the VKB one [9,11]:

C = 0

ε
exp[−π/2ε] ε = |κ/r0| � 1 (36)

where0 is a complex parameter. The quantitiesk0 and κ, characterizing the shape and
functional dependence of the ‘quasi-soliton’ (31), gain a ‘slow’ dependence on time due to the
radiation (34). We shall determine this dependence using conservation laws (3) and (5):

dN

dt
= 0

dP

dt
= 0. (37)
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We get the following equations from (37):

d

dτ

{
κ

∣∣∣∣∂3
k ω k0

g

∣∣∣∣} ≈ −1

2

∣∣∣∣∂3
k ω k0

g

∣∣∣∣ |νg||C1|2

d

dτ

{
κ

∣∣∣∣∂3
k ω k0

g

∣∣∣∣ k0

}
≈ −1

2

∣∣∣∣∂3
k ω k0

g

∣∣∣∣ |νg||C1|2(r0 + k0)

C1 = 0r0 exp

(
− πr0

2|κ|
) (38)

which coincide in form with ones presented in [12]. However, in [12] it was considered a
problem that∂2

k ω � ∂3
k ω, and hence, in the main approximation, the parametersνg andr0

are fixed. In the case under investigation, we are interested in the zero-dispersion region
(∂2
k ω ≈ 0); therefore the parametersνg andr0 are governed by the dynamics of the problem

(they are expressed in terms of the wave vectork0, which changes in the process of radiation).
It can easily be shown that the equation set (38) has the motion integral

κ|k0|4/3 = σ = constant. (39)

Using (39) we get the temporal evolution fork0 in the region where

3ε = |κ/k0| = σ |k0|−7/3� 1

from the first equation of the set (38). As in [12], it is convenient to introduce the variabley:

y = 3π

σ
|k0|7/3

and use it instead ofk0. For the region under investigation,y � 1. Lety(τ = 0) = y0. It is
obvious thaty(τ) > y0 � 1 andy > 23

7 ln y0. By integrating the first of the equations of the
set (38) by parts, we can expressy in terms ofτ with logarithmic accuracy:

y = y0
{
µ(τ) + O(y−1

0 lnµ(τ))
}

µ(τ) = 1 +y−1
0 ln

[
1 +

τ

τch

]
.

(40)

Here, a characteristic time is introduced:

τch = 4π

63

(
3π

σ

)9/7

y
−23/7
0

1∣∣02 ∂3
k ω
∣∣ expy0.

Using (40), we find that, as a result of radiation, the soliton parameters change over time
according to the relations

k0 = k0(τ = 0)[µ(τ)]3/7 κ−1 = κ−1(τ = 0)[µ(τ)]4/7

ν = ν(τ = 0)[µ(τ)]6/7 |ϕ|max= |ϕmax(τ = 0)|[µ(τ)]−5/14.
(41)

Expressions (41) show that over large time intervalsτ � τch, y
−1
0 ln(τ/τch) � 1, the change

of soliton parameters has logarithmic character and is proportional to ln(τ/τch). In this case,
the wave vectork0, widthκ−1, and speedν of the soliton rise slowly, and the soliton amplitude
|ϕ|max decreases (see figure 4).

Let us present the computer estimates of the initial velocityν (31) and characteristic time
τch (40) for the ferromagnetic slab with the parameters referred to in [1]. Assuming that the
slab thicknessd is of the order of micrometres,ωH ∼ 1010 Hz, and∂3

k ω ∼ 0.041 (near the
singular point), and taking into account thatκ � k0, for ν andτch we obtain respectively
ν ∼ 5× 104 cm s−1 andτch ∼ 25× 1018|0|−2 s. Note that the parameter0 is a significant
variable connected with the amplitude of the wave (34) by the relation (36). PuttingC ∼ 10−3

andε ∼ 0.05, we get0 ∼ 1.6× 1010. In this case, forτch, we haveτch ∼ 0.1 s.
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Figure 4. The changes of the soliton amplitudeϕmax over time as a result of radiation (for
κ/k0 = 0.05, ∂3

k ≈ 4 × 10−2, g ≈ 0.9, andk0 = 10−1). The dotted curve corresponds to
logarithmic asymptotics.

6. Radiation release

Another important point associated with the formation of ‘bright’ quasi-solitons is the question
of the ‘shape’ of the non-linear wave sequence that is ‘split off’ the initial localized distrib-
ution of the magnetization. We shall take the following qualitative arguments as guidelines
in the analysis of the evolution of the non-linear wave sequence. Equation (1) is contiguous
to the KdV equation as regards the character of the spatial dispersion, and also to the NSE
as regards the character of the non-linearity. It is known that the asymptotic behaviour of the
wave sequence forτ → ∞ in the NSE and KdV models is described by the automodelling
solutions [13–15]. By analogy with the KdV equation, we assume that forτ → ∞ on the
space-time interval|x| 6 O(∂3

k ω τ)
1/3 the non-linear sequence is described approximately by

the following automodelling solution of equation (1):

ϕ = τ−1/2χ(η) η = Xτ−1/3. (42)

The functionχ(η) satisfies the ordinary non-linear differential equation

−i

[
1

2
χ +

1

3
η ∂ηχ

]
+

i

6
∂3
k ω ∂

3
ηχ + g|χ |2χ = 0. (43)

The automodelling wave regime (42) developed after the stage at which the initial magnet-
ization distribution acquired power asymptotics of the type|ϕ|2 ∼ (−X)−3 for X→ −∞ on
the left-hand side (see figure 2). It is interesting that in the regionX < 0 equation (1) has the
following exact solution:

ϕ =
(

8

3

∣∣∣∣∂3
k ω

g

∣∣∣∣ )1/2(7

4

)1/4

(−X + a)−3/2 exp

{
−i sgn(g ∂3

k ω)

√
7

4
ln(−X + a) + iδ

}
wherea andδ are real constants (a > 0). The dotted curve in figure 2 (plotted for the parameter
values∂3

k ω ≈ 4× 10−2 andg ≈ 0.9) corresponds to such a solution. The oscillations on the
left-hand side can perhaps be interpreted as the development of the instabilities of this solution.
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One cannot calculate the analytical form of the functionχ(η), but its asymptotic behaviour
can be investigated. We have found

χ(η) = R1 exp iθ +R2 exp iθ + O[(−η)−3/2]

θ = 2

3

√
2

∂3
k ω
(−η)3/2

R1 = R0
1 exp

{
3

2
g i ln(−η)(2|R(0)2 |2 + |R(0)1 |2)

}
R2 = R0

2 exp

{
3

2
g i ln(−η)(2|R(0)1 |2 + |R(0)2 |2)

}
η→−∞

χ(η) = O

{[
exp

(
− 2

3

√
2

∂3
k ω
η3/2

)]}
η→ +∞.

(44)

The complex constantsR(0)i (i = 1, 2) in (44) acquire a dependence on the slow variable
ξ = X/τ at the edge of the domain of validity of the automodelling solution. It can be shown
that for τ → ∞, X/τ = constant, the automodelling solution is ‘sewn together’ with the
following solution of equation (1):

ϕ =
r∑

m=1

τ−m+1/2
∞∑

l=−∞
fm,l(ξ, τ )exp[i(2l − 1)θ ]

θ = τ

3
(∂3
k ω)
−1/2(−2ξ)3/2

fm,l = exp[iτχm,l(ξ, τ )]

{
R
(0,0)
m,l (ξ) +

∞∑
n=1

n∑
k=0

(ln τ)k

τ n
R
(n,k)
m,l (ξ)

}
χm,l(ξ, τ ) =

∞∑
n=1

n∑
k=0

(ln τ)k

τ n
χ
(n,k)
m,l (ξ)

ξ = X/τ for ξ < 0.

(45)

The asymptotic expansions (44) and (45) resemble the relevant expansions for the NSE and
the KdV equation [13–15].

7. Conclusions

In the framework of the non-linear Shrödinger equation with dispersion of the third order,
scenarios of the evolution of various initial distributions of the magnetization in thin films are
analysed by analytical and computer simulation methods. It is established that, in the vicinity
of the zero-dispersion point, initial spatially localized distributions of the magnetization in
the first stage ‘throw off’ part of the energy by means of the emission of a non-linear wave
sequence, and then transform into a long-living soliton-like pattern that is moving with nearly
constant velocity, whose magnitude depends on the gradients of the amplitude and the phase
of the initial distribution. The direction of motion of this ‘quasi-soliton’ is determined only by
the sign of the third derivative of the dispersion law of the exchange-dipole waves. Later on,
this pattern continues to radiate forward small-amplitude waves, leaving behind a quasi-static
small-amplitude tail. The characteristic wave vector of the ‘bright soliton’, its width, and its
velocity grow (logarithmically) over time, while the amplitude slowly decreases.

The process of small-amplitude modulation of stable spatially non-localized non-linear
waves has been investigated also, and the possibility of the existence of ‘dark solitons’ has been
predicted. The tendency towards the formation of ‘quasi-solitons’ (both ‘dark’ and ‘bright’) is
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quite natural under conditions of non-localized wave excitation (or during the ‘throwing off’
of the energy by the initial distribution of the magnetization), because the system is shifted
away from the point of zero dispersion into a region where the theory of the ordinary NSE
with quadratic dispersion allows the existence of ‘dark’ and ‘bright’ solitons.

It seems to us that the results obtained may have rather wide application: they are valid
qualitatively also in the case in which the input equation (1) includes a term containing∂2

k ω as
long as∂2

k ω < ∂3
k ω. In that case, the equation studied can be reduced to (1) by simple identity

transformations, eliminating the term involving the second derivative.
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